DEViANCE1 [일반화 선형 모형] 7. 모형 비교 및 모형 적절성 확인 with Python 이번 포스팅에서는 인접 모형(Nested)들을 적합도 측면에서 비교하는 방법과 모형 적합이 실제로 잘되었는지 확인해보는 방법에 대해서 소개하려고 한다. 이 포스팅을 읽기 전에 아래의 내용을 읽어보고 오기 바란다. - Exponential Dispersion Family - 우도 방정식 여기서 다루는 내용은 다음과 같다. 1. Deviance와 Generalized Pearson 통계량 2. 모형 비교 3. 시각적으로 모형 적합 확인 4. 실제 데이터 적용 1. Deviance와 Generalized Pearson 통계량 $y_i$의 확률 분포는 exponential dispersion family라고 하자. 같은 분포에서 독립적으로 관측된 반응 변수 벡터를 $y = (y_1, \ldots, y_n)^t$.. 2021. 2. 10. 이전 1 다음