Poisson GLM1 [일반화 선형 모형(Generalized Linear Model)] 6. Count 데이터 - Poisson Log Linear Model 적합하기 with Python 반응 변수 중에는 특정 기간 동안에 발생한 특정 사건 횟수 정보가 담긴 경우가 종종 있다. 예를 들어 1주일에 음주 횟수, 담배 흡연 횟수 등이 있다. 이처럼 횟수 정보를 가지는 반응 변수는 포아송(Poisson) 분포를 따른다고 볼 수 있다. 일반화 선형 모형은 반응 변수가 포아송 분포를 따르는 경우에 적합한 모형을 제공한다. 이번 포스팅에서는 포아송 분포를 따르는 반응 변수에 대하여 모형을 적합하는 방법을 소개한다. 여기서 다루는 내용은 다음과 같다. 1. 모형 적합 알고리즘 유도 2. 실제 데이터 적용 1. 모형 적합 알고리즘 유도 먼저 모형 적합 알고리즘에 일반적인 내용을 다룬 포스팅이 있으니 반드시 읽어보기 바란다. 우도방정식과 모형 적합 우리에게 데이터 $(\tilde{x}_i, y_i), \.. 2021. 1. 16. 이전 1 다음