Durbin-Watson 모형1 [시계열 분석] 3. (General) Durbin-Watson 검정 with Python 시계열 모형(특히 최소 제곱법으로 구한 모형)에서 오차의 독립성이 만족하지 않는다면 모형 파라미터의 정확성(편의 발생)이 떨어지고 예측구간의 신뢰성 또한 보장되지 않는다. 따라서 모형을 추정한 후 오차의 독립성을 만족하는지 확인해봐야할 것이다. 독립성을 만족하지 않는다면 오차는 종속성을 갖는다고 볼 수 있다. 시계열 데이터에서 오차는 종종 자기 상관(Autocorrelation)이라는 형태로 종속성을 갖게된다. 따라서 오차의 자기 상관 여부를 검정하는 방법이 필요하다. 이번 포스팅에서는 오차의 자기 상관 존재 여부를 통계적으로 검정하는 Durbin-Watson 검정을 소개한다. 여기서 다루는 내용은 다음과 같다. 1. Durbin-Watson 검정 2. Generalized Durbin-Watson 검정.. 2021. 3. 21. 이전 1 다음